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REVIEW

Cerebral cavernous malformation: new molecular and
clinical insights
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Cerebral cavernous malformation (CCM) is a vascular
malformation causing neurological problems, such as
headaches, seizures, focal neurological deficits, and
cerebral haemorrhages. CCMs can occur sporadically or
as an autosomal dominant condition with variable
expression and incomplete penetrance. Familial forms
have been linked to three chromosomal loci, and loss of
function mutations have been identified in the KRIT1/
CCM1, MGC4607/CCM2, and PDCD10/CCM3 genes.
Recently, many new pieces of data have been added to the
CCM puzzle. It has been shown that the three CCM genes
are expressed in neurones rather than in blood vessels. The
interaction between CCM1 and CCM2, which was
expected on the basis of their structure, has also been
proven, suggesting a common functional pathway. Finally,
in a large series of KRIT1 mutation carriers, clinical and
neuroradiological features have been characterised. These
data should lead to more appropriate follow up, treatment,
and genetic counselling. The recent developments will also
help to elucidate the precise pathogenic mechanisms
leading to CCM, contributing to a better understanding of
normal and pathological angiogenesis and to the
development of targeted treatment.
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C
erebral cavernous malformation (CCM;
OMIM 116860) is a vascular malformation
characterised by closely clustered enlarged

capillary-like channels with a single layer of
endothelium without intervening brain parench-
yma.1 CCMs are mostly located in the brain, but
are also observed in the spinal cord, retina, and
as hyperkeratotic cutaneous capillary-venous
malformations on the skin.2 3 The prevalence is
about 0.5%, based on cerebral magnetic reso-
nance imaging (MRI) and necropsy studies of
large cohorts of patients.4 5 However, the clinical
prevalence is much lower, as only 20–30% of
individuals are symptomatic,4 usually between
the third and the fifth decade of life. The main
symptoms are headaches, seizures, focal neuro-
logical deficits, and cerebral haemorrhages.

Ultrastructurally, these lesions consist of
endothelium lined vascular sinusoids embedded
in a dense collagenous matrix. They are char-
acterised by the absence or abnormality of
blood–brain barrier components.6–8 The tight
junctions between the endothelial cells are
poorly formed or absent, with gaps observed

between the cells. No astrocytic foot and no
normal nervous tissue is present within the
lesion, and pericytes are rare.

Both sporadic and familial forms of CCM have
been identified. In the familial form inheritance
is autosomal dominant with incomplete pene-
trance and variable expression.9 10 The proportion
of familial cases is estimated to be 50% in
Hispanic American patients of Mexican des-
cent,11 but seems to be less in other populations.12

Often, sporadic cases are characterised by the
presence of one lesion, whereas in familial CCM,
multiple lesions are present and their number is
strongly correlated with the patients’ age
(fig 1).9 11 In the past, it was considered that up
to 31% of familial CCM cases had only one lesion
(as reviewed by Siegel10), but this was probably
an overestimation because of the relative insen-
sitivity of the radiological techniques used. The
dynamic nature of the inherited lesions has also
been emphasised.13 The diameter of lesions
ranges from a few millimetres to several centi-
metres, and new lesions appear at a rate of 0.2 to
0.4 lesions per patient-year. The prospective
haemorrhage rate is of 3.1%, and the new onset
seizure rate is 2.4% per patient-year.14

Although rare, in populations other than
Hispanic Americans, familial cases allow us to
unravel pathogenic molecular mechanisms.
Indeed, by linkage analysis, three genetic loci
have been implicated, on chromosomal arms 7q
(CCM1), 7p (CCM2), and 3q (CCM3)
(table 1).15 16 The symptoms seem to be similar,
yet the clinical penetrance was estimated at 88,
100 and 63% in the three loci, respectively.16 The
first break through led to the identification of
KRIT1 (Krev Interaction Trapped1) as the CCM1
gene.17 18 It encodes a protein containing known
protein–protein interaction domains: four
ankyrin repeats, a C-terminal FERM domain
and one NPxY motif. Although without known
function, KRIT1 was thought to be an intracel-
lular effector owing to its structure and its initial
identification by yeast two-hybrid screen as a
KREV1/RAP1a interactor.19 Characterisation of
KRIT1 expression during early angiogenesis and
in human adult organs, and demonstration of a
role in arterial morphogenesis and identity in
mice lacking Ccm1, have started to unravel
KRIT1 function.20–23 In addition, the identifica-
tion of the CCM224 25 and CCM3 genes26 has paved
the way toward understanding the molecular
pathways involved in CCM formation.

Abbreviations: CCM, cerebral cavernous malformation
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ADVANCEMENTS REGARDING KRIT1
Clinical developments
As expected on the basis of linkage,16 a mutation in KRIT1
was found in approximately 40% of familial CCM cases. So
far about 100 distinct mutations have been reported;
however, until recently the associated phenotype has been
poorly described. Denier et al carried out a detailed clinical,
neuroradiological, and molecular analysis of 64 KRIT1
families.27 Nearly half the patients had their first neurological
symptoms before 25 years of age, which is earlier than in
sporadic CCM. In their cohort, the maximum clinical
penetrance was about 62% on the basis of 202 KRIT1
mutation carriers (table1). This percentage is smaller than
the clinical penetrance previously associated with the CCM1
locus (88%),16 and highlights the importance of large clinical
studies to allow precise genetic counselling. This discrepancy
could be explained by the size of the cohort (64 v 8 families)
but also by the age limit of the KRIT1 mutation carriers
included (10 v 20 years), older patients being more
susceptible to developing symptoms than younger ones.
Denier et al also showed that the radiological penetrance is
incomplete, as at least five asymptomatic mutation carriers—
aged from 27 to 48 years—did not show any cerebral lesion
on highly sensitive gradient echo MRI sequences. In addition,
at least four patients had only one lesion on gradient echo
MRI sequences, showing that in some patients the familial
nature of the lesion on the basis of multiplicity could be
overlooked.

New insights into the expression and function of
KRIT1 protein
During recent years, many studies have attempted to identify
the function of KRIT1 and the mechanism through which it
causes CCM. Despite the vascular nature of CCMs, KRIT1
mRNA and protein have been detected in astrocytes,
neurones, and various epithelial cells in adults.20 22

Importantly, KRIT1 protein, but not mRNA, was also
detected in vascular endothelial cells during early angiogen-
esis, as well as in capillaries and arterioles of several human
adult organs.20–22 Krit1 was also shown to co-localise with
microtubules in bovine endothelial cells. However, the Krit1
polyclonal antibody used, detected a much smaller protein
(58–60 kDa) than predicted (78–84 kDa).28 Another antibody
has since identified the predicted size protein on western
blot, but the primary location of Krit1 awaits elucidation.29

Murine embryos lacking the Ccm1 gene suggested an
essential role of Krit1 in arterial morphogenesis and identity.23

The homozygous mutant embryos died in mid-gestation and
the vascular defect was associated with downregulation of
artery specific markers: Efnb2, Dll4, and Notch4. This
suggests that the starting point of the development of CCM
could be defective arterialisation.30 This is surprising, as
CCMs are slow flow lesions. However, it could be that Krit1 is
important for arterial differentiation, and if deficient leads by
default to venous identity, with abnormal morphology. If so,
Krit1 could also be involved in the pathogenic pathways
leading to arteriovenous malformations.

Krit1 does not have exactly the same effect in mouse as in
man. Analysis of 20 Ccm1+/2 mice did not show any
cavernous malformation.30 In contrast to man, an additional
deficit may be needed, as shown by Ccm1/Trp53 double
mutant mice. Cerebral vascular malformations, presenting
features reminiscent of cavernous malformation but also of
venous malformation and capillary telangiectasia, were
observed in 55% of the Ccm1+/2Trp532/2 mice. As neither
Trp53+/2 nor Trp532/2 mice present vascular lesions, the p53
tumour suppressor gene is not enough to cause them, but
suggests that cell cycle regulators can act as modifiers in the
pathogenesis of cerebrovascular malformations.

The initially reported interaction between KRIT1 and
RAP1a has not been confirmed. Instead, an interaction with
integrin cytoplasmic domain associated protein-1a (ICAP1a)
was identified (fig 2).31 32 The latter is known to participate in
integrin b1 mediated cell adhesion and migration. The
interactions of b1 integrin and KRIT1 with ICAP1a occur
similarly, through a NPxY motif/PTB domain, which suggests
that integrin signalling plays a role in CCM pathogenesis.
ICAP1a and KRIT1 possess a functional nuclear localisation
sequence and both of them have the capacity to shuttle
between the cytoplasm and the nucleus (fig 2).29 33 Moreover,

Figure 1 (A) Axial T2 weighted magnetic resonance imaging
sequence; solitary lesion (white arrow) in the right occipital lobe in a 3
year old boy. (B) Axial T2 weighted gradient echo sequence; multiple
supratentorial cerebral cavernous malformations (black arrows) in a
young adult.

Table 1 Genes involved in familial cerebral cavernous malformations (http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db = OMIM)

CCM1 CCM2 CCM3

Locus 7q11–q22 7p15–13 3q25.2–q27
Gene KRIT1 MGC4607(malcavernin) PDCD10
OMIM 604214 603284 603285
Mutation type Loss of function Loss of function? Loss of function?
Second hit/trans-heterozygosity 1 Patient ? ?

? ? ?
Molecular function Modulator of ICAP1a, malcavernin

interaction, association with microtubules?
KRIT1 interaction, scaffold for MEKK3 ?

Cellular/tissue function Cell adhesion/migration, arterial
morphogenesis/identity

Osmoregulation ? Apoptosis?

Clinical penetrance 62–88% ? ?
References 12–15, 20, 24, 26, 28, 29, 40 13, 21, 22, 26 13, 23, 26
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ICAP1a is able to sequester KRIT1 in the nucleus.29 It seems
that KRIT1 acts as an intracellular signalling molecule
through extracellular/adhesion signals, which may be impor-
tant for the activation of differentiation programmes that
determine arterial identity.

IDENTIFICATION OF THE CCM2 GENE
Two teams independently identified MGC4607 (malcavernin)
to be the CCM2 gene (table 1).24 25 They used two different
approaches: sequencing of positional candidate genes and
loss of heterozygosity mapping, respectively. After exclusion
of mutations in the KRIT1 gene, Liquori and co-workers
identified eight different mutations in nine of 27 patients,
and Denier et al in 10 of 30 patients. This corresponds to the
expected frequency of about 20%, based on previous linkage
data.16 All but one mutation provoked either a premature
termination codon or a deletion of the first exon, suggesting
loss of function. In one case, a missense mutation, L198R,
was reported. Verlaan et al did not identify any mutation in
MGC4607 in a cohort of 31 sporadic patients lacking KRIT1
mutation: 21 with a single and 10 with multiple malforma-
tions.34

The CCM2 gene has several orthologues in various
vertebrates, but no paralogue. Northern blot analysis showed
ubiquitous expression in human adult tissues (MTC1 panel,
Clontech), similar to KRIT1. In situ hybridisation studies
have shown Ccm2 mRNA expression in neurones35 36 and
astrocytes,37 similar to Ccm1 expression at embryonic and
adult stages. Ccm2 expression was also transiently observed
in meningeal and parenchymal cerebral vessels.

Interestingly, the CCM2 protein (malcavernin) contains a
phosphotyrosine binding (PTB) domain, similar to ICAP1a,
suggesting an interaction between KRIT1 and malcavernin,
and a common functional pathway. Indeed, Zawistowski et al
showed that KRIT1 and malcavernin interact and that
malcavernin is capable of sequestering KRIT1 in the
cytoplasm (fig 2).29 The only CCM2 missense mutation

reported so far—L198R, located in the PTB domain—was
able to inhibit this interaction. This suggests that loss of the
KRIT1–malcavernin interaction could contribute to CCM
pathogenesis, possibly by its regulation of KRIT1 shuttling
to and from the nucleus. Compared with ICAP1a, the NPxY
motif was not critical for the KRIT1–malcavernin interaction.
Moreover, KRIT1, malcavernin, and ICAP1a were found in a
ternary complex, suggesting that other interaction sites exist.

The murine orthologue of malcavernin, OSM (osmosensing
scaffold for Mekk3), was shown to modulate the Mekk3
dependent p38Mapk activation induced by hyperosmotic
shock (fig 2).38 Knockdown of endogenous CCM2 in HEK293
cells resulted in marked inhibition of sorbitol mediated p38
activation, which was confirmed in murine Ccm2+/2 embryo-
nic fibroblasts.29 38 As KRIT1 was identified by immunopre-
cipitation in a ternary complex with malcavernin and
MEKK3, this suggests a possible function of the CCM1/2
complex in p38MAPK activation.29 Moreover, upon sorbitol
treatment the CCM1/2 complex was shifted from the
cytoplasm to the cell periphery. It is well known that PTB
domain containing proteins have the capacity to bind
phospholipids in addition to peptides, and preliminary
experiments suggest that OSM would be able to do this as
well.39 It could be that this pathway also lies downstream of
integrin mediated activation. Interestingly, mice lacking
Mekk3 or p38a Map kinase have significant defects in
placental angiogenesis and in blood vessel development, in
particular in the head region.40 41

IDENTIFICATION OF THE CCM3 GENE
The latest breakthrough in unravelling CCM pathogenesis
was the identification of PDCD10 as the CCM3 gene (table 1).26

Bergametti and coworkers again used loss of heterozygosity
mapping, proving the efficiency of this method in loss of
function based disorders. They found seven distinct muta-
tions including one large deletion in eight of 20 families
studied. As point/small mutations in the KRIT1 and the
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Figure 2 Schematic presentation of molecular pathways involving the CCM proteins.N NPxY motif; #phosphotyrosine binding (PTB) domain; dashed
lines, hypothetical interactions. ICAP1a interacts with the b1 integrin cytoplasmic domain and controls cell spreading/cell proliferation on fibronectin. It
was suggested that KRIT1 could be a modulator of this pathway. KRIT1/CCM2/ICAP1a can form a ternary complex. ICAP1a and KRIT1 can go to the
nucleus. It is not known if they go separately or together. Hyperosmotic environment stimulates in mammalian cells the Rac1-OSM(CCM2)-MEKK3-
MKK3-p38MAPK pathway leading to osmoregulation. KRIT1/CCM2/MEKK3 form a ternary complex.
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MGC4607 genes had already been excluded, a larger propor-
tion of mutations in the PDCD10 gene was expected,
according to previous linkage data.16 Similarly, two other
groups identified PDCD10 mutations in a minority of CCM
families lacking KRIT1 and MGC4607 mutations: two of 15
and three out of 29, respectively.42 43 Moreover, in the study
undertaken by Liquori and co-workers, in one large CCM3
locus linked family, the PDCD10 gene was excluded by a
recombination event and these investigators suggested the
existence of a fourth CCM gene mapping near or within
chromosome 3q26.3–3q27.2.

As in the case of the MGC4607 gene, no paralogue was
identified for PDCD10 in the human genome. Instead,
database searches revealed several highly conserved ortholo-
gues in vertebrates and invertebrates, highlighting an
evolutionary conservation. Like KRIT1 and malcavernin,
PDCD10 is ubiquitously expressed on the basis of northern
blot analysis. As with Ccm1 and Ccm2, in situ hybridisation
showed Ccm3 mRNA expression in neuronal cells at
embryonic and adult stages.35 Similarly, its expression
coincided with that of Ccm2 in meningeal and parenchymal
cerebral vessels. Otherwise little is known about this gene.
Curiously, its expression was found to be upregulated in the
human myeloid cell line TF-1, upon induction of apoptosis.44

As the CCM 1, 2, and 3 phenotypes seem to be very similar if
not the same, and as the mRNA expression patterns overlap,
PDCD10 most probably has a function closely linked to that
of CCM1 and 2.

FUTURE
The identification of the three CCM genes represents an
important step towards the elucidation of the molecular basis
of CCM. In addition, large prospective studies of genotype–
phenotype association can now be undertaken. This would
allow evaluation of clinical penetrance, age at onset,
frequency and severity of symptoms, evolution, and response
to treatment, all pivotal factors for designing accurate patient
care guidelines. Other interesting questions could be
addressed. What is the percentage of familial CCM and what
is the frequency of de novo germline mutations? Is the KRIT1
associated hyperkeratotic cutaneous capillary-venous mal-
formation also present in patients with mutations in the
MGC4607 or the PDCD10 genes, suggesting an important
function in cutaneous angiogenesis for all three proteins? Is
there a significant co-occurrence of CCMs with develop-
mental venous anomalies as suggested,45 and if so, what is
the basis for this? Do all CCM families have a mutation in one
of the three known genes, or do others exist? Twelve families
in the screening carried out by Bergametti et al did not
harbour a mutation in any of the three CCM genes.26 Large
deletions and non-sensitivity of the techniques used could
explain this, but it also opens the door for the existence of a
fourth gene, as recently suggested by Liquori et al.43 Another
aspect for deeper investigation is the aetiology of sporadic
CCM: are they caused by genetic or environmental factors or
both? If genetic in origin, are the causative genes the same as
in the familial forms? Sporadic patients with multiples
lesions seem to harbour KRIT1 mutations in approximately
the same proportion as familial cases.46 47 These mutations are
either de novo or inherited from an asymptomatic parent. If
this is also true for malcavernin and PDCD10, multiple CCMs
can be postulated to have a genetic aetiology. Thus sporadic
cases with multiple lesions need to be considered as familial
cases, which is of major importance for patient care and
genetic counselling. In contrast, sporadic cases with only one
malformation may indeed differ in aetiology, with no
increase in risk for progeny. Based on these data, we suggest
a clinico-genetic risk evaluation scheme (fig 3).

The pathogenic mechanism leading from the heterozygous
germline mutation to CCM formation is poorly understood.
Two major hypotheses have been put forward: haploinsuffi-
ciency and paradominant inheritance. The latter has been
favoured and could explain several CCM features: the
localised nature and the number of lesions (usually one in
sporadic cases versus multiple in familial cases) and the age
at the first symptom (earlier in familial cases). Moreover, this
mechanism has been shown to be true for a patient with
another inherited multifocal vascular malformation, glomu-
venous malformation.48 Gault and coworkers also identified
two truncating biallelic mutations in KRIT1 in one CCM
patient with multiple lesions, although two previous screens
had failed to detect somatic mutations in 20 and 72 patients,
respectively (including familial and sporadic ones).49–51 While
the techniques used may not have been sensitive enough,
other mechanisms are likely to contribute to CCM pathogen-
esis.52 One explanation is trans-heterozygosity, in which case
a patient with a germline mutation in the CCM1 gene would
have a somatic mutation in CCM2 or CCM3 gene and so forth.
This could explain intrafamilial clinical variability. This can
now be tested in CCM lesions, as well as in the Ccm1+/

2Trp532/2 murine model, but may need laser capture
dissection to enrich the subpopulation of cells with second
hit.

As patients with a familial CCM history present similar
neurological symptoms, one could assume that the three CCM
genes are involved in a common functional pathway. Indeed,
it has been shown that KRIT1 interacts with malcavernin,
and there is evidence that loss of this interaction contributes
to the CCM pathogenesis.29 In this scenario, the CCM3 gene
product, suspected to be involved in apoptosis, should be a
member of this complex or play a role in a KRIT1/
malcavernin pathway. As KRIT1 and malcavernin are
suggested to be involved in b1 integrin signalling through
ICAP1, with possible downstream signalling via p38MAPK,
and as PDCD10 was identified as a gene involved in
apoptosis, it may be that the CCM pathway functions in cell
adhesion governed survival. If the CCM genes have such a role
in vascular endothelial cells or neural cells or both, the
enlarged endothelial lined cerebral vascular channels could
result from inhibited apoptosis. This would be similar to what
has been proposed for cutaneous venous malformations,
which are caused by TIE-2 point mutations that lead to
increased Akt activity.53 54

Headaches, seizures, focal neurological deficit,
cerebral haemorrhages

Family history +
(MRI proven)

Family history –
(MRI proven)

Family history –
(MRI proven)

Genetic predisposition
(CCM 1, 2, 3 gene screening)
High risk of familial transmission

Unknown aetiology
Low risk of familial
transmission

MRI (gradient echo)

Solitary CCM lesionMultiple CCM lesions

Figure 3 Scheme for evaluation of genetic risk.
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As CCM1, CCM2, and CCM3 seem to be expressed in
neurones rather than in blood vessels, the vascular phenotype
should result from a defect in signalling between these two
juxtaposed structures. Interestingly, it has been shown that
vascular and neuronal development are closely linked with
several proteins—for example, neuropilin and VEGF, having
a functional role in both (reviewed by Carmeliet55). Moreover,
some studies have shown the importance of neuronal
invasion of primary capillary plexus for its proper remodel-
ling and maturation (reviewed by Eichmann et al56).
Supplementary in vitro and in vivo studies on the three
CCM proteins are clearly needed: co-immunoprecipitation
and co-localisation studies implicating CCM3, and the
generation of conditional homozygous, heterozygous, and
compound heterozygous mutant mice. This should yield
further fundamental insights, especially as to whether the
primary defect is vascular or neuronal. Despite the lack of
detailed mechanistic understanding of CCM formation, the
important discoveries that have been made enable precise
molecular diagnosis in patients with a family history or with
multiple lesions, testing that should now be taken into
clinical practice to allow more appropriate follow up,
treatment, and genetic counselling.
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