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Summary 

Identifying mutations that cause specific osteochon- 
drodysplasias will provide novel insights into the func- 
tion of genes that are essential for skeletal morphogen- 
esis. We report here that an autosomal dominant form 
of Stickler syndrome, characterized by mild spondy- 
Ioepiphyseal dysplasia, osteoarthritis, and sensori- 
neural hearing loss, but no eye involvement, is caused 
by a splice donor site mutation resulting in "in-frame" 
exon skipping within the COLl lA2 gene, encoding the 
a2(XI) chain of the quantitatively minor fibrillar colla- 
gen XI. We also show that an autosomal recessive dis- 
order with similar, but more severe, characteristics is 
linked to the COL 11A2 locus and is caused by a glycine 
to arginine substitution in a2(XI) collagen. The results 
suggest that mutations in collagen XI genes are associ- 
ated with a spectrum of abnormalities in human skele- 
tal development and support the conclusion of others, 

based on studies of murine chondrodysplasia, that col- 
lagen XI is essential for skeletal morphogenesis. 

Introduction 

Molecular genetic analyses of osteochondrodysplasias, 
hereditary disorders affecting skeletal development in 
both mice and humans, promise to provide insights into 
the large number of genes essential for skeletal morpho- 
genesis. With improved techniques for gene mapping, po- 
sitional cloning, functional cloning, and mutation detec- 
tion, the task of identifying the mutations causing these 
disorders is becoming less daunting. This is illustrated by 
the recent successes in identifying mutations in genes 
encoding structural, growth factor receptor, and sulfate 
transporter proteins as causes of distinct osteochondro- 
dysplasias (Warman et al., 1993; Shiang et al., 1994; Rear- 
don et al., 1994; H&stbacka et al., 1994). Adding to this 
is the accompanying paper by Li et al. (1995 [this issue 
of Cell]), which demonstrates that autosomal recessive 
chondrodysplasia (cho) in mice is due to a mutation in the 
gene, Col l la  1, coding for one of the polypeptide subunits 
of the quantitatively minor fibrillar collagen XI in cartilage. 

Collagen Xl molecules are heterotrimers of three distinct 
subunits, a l(Xl), ~2(Xl), and cx3(Xl), encoded by Co111al, 
Co111a2, and Col2al, respectively (Eyre and Wu, 1987). 
Analysis of cho mice demonstrates that the absence of 
~I(Xl) collagen chains, and therefore collagen Xl hetero- 
trimers, leads to a severe disruption of the columnar ar- 
rangement and maturation of growth plate chondrocytes, 
abnormalities in collagen fibril diameter, and reduced 
cohesive strength of cartilage matrices (Li et al., 1995). 
These data suggest that the Col1 l a l  gene is essential for 
skeletal morphogenesis. 

Here, we report that the COL11A2 locus, encoding the 
a2(Xl) subunit of collagen Xl, is associated with autosomal 
dominant and autosomal recessive human osteochondro- 
dysplasias. We describe a mutation affecting a 5' splice 
site leading to in-frame exon skipping and causing an au- 
tosomal dominant form of Stickler syndrome. We also 
show that an autosomal recessive disorder characterized 
by spondyloepiphyseal dysplasia and sensorineural hear- 
ing loss, similar to the otospondylomegaepiphyseal dys- 
plasia (OSMED) syndrome, is linked to the COL11A2 locus 
and is caused by a glycine to arginine substitution in ~2(Xl) 
collagen. These data suggest that mutations affecting col- 
lagen Xl can cause a spectrum of clinical phenotypes and 
that collagen Xl is essential also for human skeletal mor- 
phogenesis. 

Results 

Identification of the COL11A2 Mutation in a Family 
with Stickler Syndrome 
We recently described linkage to markers near the 
COLllA2 locus in a large Dutch kindred with a Stickier 
syndrome phenotype (Bru nner et al., 1994). All 16 affected 
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Figure 1. A Single Nucleotide Change in a 
Splice Donor Site in COL11A2 in the Family 
with Dominant Osteochondrodysplasia 
Schematic representation of the c¢2(Xl) colla- 
gen mRNA showing the in-frame deletion of an 
exon caused by the G to A transition in the 5' 
splice site downstream of the exon. This exon 
sequence is located 108 nt upstream of the 
junction between sequences encoding the tri- 
ple-helical (COL) and C-propeptide domains of 
the ~2(Xl) chain: Genomic sequencing of the 
noncoding strand from a patient (lane 2) and 
a control (lane 1) is shown (top right). The ar- 
rowhead points to the mutation site. The geno- 
mic sequence covering the mutation site with 
exon sequences in capital letters and intron 
sequences in small letters are provided (top 
left). The arrow below the noncoding strand in- 
dicates the sequencing direction in the autora- 
diogram. 

individuals in the family had characteristic facial features 
of Stickler syndrome (Stickler et al., 1965) combined with 
hearing impairment. Several patients had cleft palate and 
mild arthropathy, but none had the ophthalmological signs 
usually associated with the Stickler syndrome. To identify 
the mutation causing the disorder in this family, we used 
reverse transcription-polymerase chain reaction (RT-PCR) 
from total RNA extracted from chondrocytes and Epstein- 
Barr virus-transformed (EBV-transformed) lymphoblasts 
from patients heterozygous for the defective allele and 
from unaffected individuals. Primers for nested PCR were 
designed to cover, in five overlapping fragments, the 
whole coding sequence (4953 bp) of the ct2(Xl) collagen 
gene. Restriction enzymes were used to cut these 
33P-labeled amplification products into several smaller 
fragments to enhance the likelihood of detecting differ- 
ences between the patient and the control samples. The 
digested fragments were analyzed on MDE (AT Biochem) 
and single-strand conformation polymorphism (SSCP) 
gels. 

SSCP shifts and heteroduplexes were identified, and 
the corresponding fragments were sequenced. Several 
neutral polymorphisms and a double-sequence caused by 
deletion of 54 nucleotides were observed. Since the dele- 
tion corresponded to an exon in the triple-helical region of 
the ~2(XI) gene, we tested the hypothesis that the deleted 
sequence represented a skipped exon during RNA splic- 
ing of ~2(Xl) transcripts. A novel primer pair was synthe- 

sized according to the sequences of exons adjacent to the 
skipped exon, and the corresponding region was amplified 
using patient genomic DNA as a template. Cycle-sequenc- 
ing of this PCR product revealed heterozygosity for a 1 bp 
change at the exon-intron boundary such that the intronic 
donor-site sequence, GTGAG, was replaced by ATGAG 
(Figure 1). This change created a novel Nlalll site in the 
genomic sequence. To demonstrate that this sequence 
change was present in all the affected individuals, geno- 
mic DNAs of all family members were PCR amplified, the 
sense primer being end-labeled with 32p. After Nlalll diges- 
tion, these products were run on 5% denaturing sequenc- 
ing gels. The G to A transition cosegregated with the dis- 
ease (Figure 2). 

Linkage between an Autosomal Recessive 
Phenotype and Loci on Chromosome 6p 
A second Dutch kindred has been identified, in which three 
affected siblings have severe degenerative joint disease 
(osteoarthritis), which presents in early adulthood and af- 
fects predominantly the hips, knees, elbows, and shoul- 
ders (Figure 3). The spine is less severely affected, and 
adult height is only slightly below that of the unaffected 
siblings. There is increased lumbar lordosis and prominent 
interphalangeal joints. Short fifth metacarpals are found 
in all cases. The patients have distinct facial features: mid- 
face hypoplasia with a short upturned nose, prominent 
eyes, depressed nasal bridge, and prominent supraorbital 

~ 1 2 5  bp  

- -  55  bp  

Figure 2. Cosegregation of the Phenotype 
and the Mutation in the Family with Dominant 
Osteochondrodyspiasia 
Cosegregation analysis of the splice site muta- 
tion in the Stickier family by Nlalll digestions 
of 32p end-labeled PCR products. A novel re- 
striction site, created by the mutation, is 55 bp 
downstream of the end-labeled primer. In wild- 
type DNA, an Nlalll site is located 125 bp down- 
stream of the end-labeled primer. Closed sym- 
bols represent individuals with the disease 
phenotype. 
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Figure 3. Severe Osteoarthritis at the Hip 
Joints of a Patient with Recessive Osteochon- 
drodysplasia 

Pelvic radiograph of patient 5 (aged 29 years) 
from the kindred with the autosomal recessive 
phenotype. Joint space narrowing, osteophyte 
formation, and osteosclerosis at the hips can 
be observed. 
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ridges. Sensorineural hearing loss is present from birth 
and requires the use of hearing aids in all three affected 
siblings. None of the patients have myopia or vitreoretinal 
degeneration. The pedigree of the family is shown in Fig- 
ure 4A, and the clinical features are summarized in Table 
1. Note that the parents of the affected siblings are fourth 
cousins. 

The affected siblings were found to be homozygous for 
an extended haplotype of seven CA (dinucleotide) repeat 
polymorphisms from chromosome 6p21 near the COL11A2 
locus (Figure 4A). If the consanguinity loop was ignored, 
a maximum Iod score of 1.45 without recombination was 
obtained for those markers that were fully informative 
(D6S306, D6S276, D6S265, D6S273). Higher Iod scores 
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Figure 4. Homozygosity by Descent at the COL11A2 Locus and a 
Single Nucleotide Change in the Coding Sequence of COL11A2 in the 
Family with Recessive Osteochondrodyspl~.sia 

(A) Pedigree of the family with autosomal recessive osteochondrodys- 
plasia (top). The genotype of each individual for 10 teated CA repeat 
markers from 6p21 is given. The haplotype associated with the disor- 
der is in bold letters, and the haplotype for which the affected individu- 
als are homozygous by descent is boxed. The result of the analysis 
of an intragenic Mspl polymorphism (COL 11A2) is shown in the photo- 
graph of an ethidium bromide-stained agarose gel (middle). Mspl 
cleaves a 320 bp fragment into 230 bp and 90 bp (data not shown) 
fragments. The photograph of an etbidium bromide-stained agarose 
gel at the bottom of the figure shows the absence of an Mspl site (note 
that this site is unrelated to the polymorphic site shown in the middle) 
in a genomic fragment due to the G to A transition in COL11A2. When 
digested with Mspl, the 1.2 kb genomic PCR product is digested into 
fragments of 800 bp (data not shown), 270 bp, and 150 bp in affected 
individuals. In unaffected children, the 270 bp fragment is cleaved into 
fragments of 200 bp and 70 bp (data not shown). The parents show 
the presence of all fragments. 
(B) Schematic representation of the ~2(Xl) collagen mRNA showing 
the G to A transition in the codon of Gly-175 as counted from the amino 
terminus of the triple helical (COL) domain of the polypeptide chain. 
The mutation is located within a 45 bp-long exon of COL11A2. Genomic 
sequencing of the coding strand from a patient (lane 1), parents (lanes 
2 and 3), and an unaffected child (lane 4) is shown (top right). The 
arrow points to the mutation site. The exon sequence and deduced 
amino acid sequence covering the mutation site are provided (top left). 
The G to A transition changes the glycine codon to an arginine codon. 
Closed symbols represent individuals with the disease phenotype. 
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Table 1. Comparison of Clinical Features in the Families with Autosomal Dominant and Autosomal Recessive Phenotypes Linked 
to COLllA2 with Those of the OSMED and Classical Stickler Syndrome 

Autosomal Autosomal Classical 
Recessive Kindred OSMED Syndrome Dominant Kindred Stickler Syndrome 

High myopia and vitreoretinal degeneration 
Epiphyseal dysplasia and osteoarthritis 
Vertebral involvement 
Hearing loss 
Cleft palate (%) 
Midface hypoplasia and upturned nose 
Inheritance pattern 

Absent Absent Absent Severe 
Severe Severe Mild Mild 
Mild Mild Mild Mild 
Moderate/severe Moderate Moderate Absent/mild 
Absent (0 of 3) >50 25 (4 of 16) <35 
Yes Yes Yes Yes 
autosomal recessive autosomal recessive autosomal dominant autosomal dominant 

were obtained, however, when the consanguinity loop was 
taken into account. Since for most of these markers allele 
frequencies are not available from the Dutch population 
and the frequency of the abnormal allele is also unknown, 
the Iod score calculations were performed with a range 
of parametric values. Conservative estimates of 0.002 for 
the abnormal allele and 0.005 for the marker haplotype 
yielded a Iod score of 3.09 at ® = 0.0. 

Incorporation of COLl lA2 into the Human 
Linkage Map 
Pairwise linkage analyses for COL 11A2 and loci on human 
chromosome 6 were performed to place the COL11A2 
gene into the human linkage map. As a marker for the 
COL11A2 gene, we used an intragenic SSCP. Zero recom- 
bination was found between COL11A2 and two loci, 
D6S291 (Z = 3.01) and D6s2g (Z = 7.65). The results of 
multipoint analysis are shown in Figu re 5; the most favored 
order is [HSPA 1-D6S273]-[COL 11A2-D6S29-D6S291- 
D6S439]-GL01. This order is consistent with the recent 
consensus map of chromosome 6 (Volz et al., 1994) and 
the second-generation Genethon map (Gyapay et al., 1994). 
It should be noted that the relationship between D6S291 
and COL11A2 is based on only 10 meioses within three 
Centre d'Etudes du Polymorphisme Humain (CEPH) pedi- 
grees informative for both loci. 

In the family with recessive osteochondrodysplasia, pa- 
tient number 6 has a recombination between D6S273 and 
D6S291 (see Figure 4A). Since we did not observe any 
recombinations between the COL11A2 gene and the 
D6S291 marker in the three informative CEPH families, 
we wanted to confirm that the gene is within the inherited 
haplotype. We have recently identified a novel polymor- 
phism within the COL11A2 gene that creates an Mspl re- 
striction site. A 180 bp genomic fragment containing this 
polymorphism was amplified from all family members. 
Both parents are heterozygous, and all children are homo- 
zygous for the two alleles identified, thus placing the ob- 
served recombination in patient number 6 centromeric to 
COL11A2, between the gene and the marker D6S291 (see 
Figure 4A). 

Identification of the COL11A2 Mutation 
in the Family with Autosomal Recessive 
Osteochondrodysplasia 
To find the mutation causing the autosomal recessive dis- 
order, we used RT-PCR with total RNA extracted from 
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Figure 5. Partial Linkage Map around the COL11A2 Locus 
Multipoint linkage map of human chromosome 6p, incorporating 
COLllA2. The log 10 order probability for adjacent loci is indicated. 
®, sex average recombination frequency. 

EBV-transformed lymphoblasts derived from parents and 
affected individuals. Several overlapping fragments were 
generated, and the complete coding sequence of the 
~2(Xl) collagen gene was determined for one individual. 
This identified a G to A transition, converting a glycyl to 
an arginyl codon, within the triple-helical domain of ~2(Xl) 
collagen. This change in sequence eliminated an Mspl 
restriction site within the genomic sequence. To demon- 
strate that this sequence change was present in all the 
affected individuals, genomic DNAs of all family members 
were PCR amplified, and the products were electropho- 
resed through a 4% agarose gel after digestion with Mspl 
(see Figure 4A). The affected children showed the ab- 
sence of the Mspl site. A similar analysis with DNA from 63 
unrelated parents (corresponding to 126 chromosomes) of 
CEPH families showed the presence of this Mspl site in 
all samples (data not shown), thus excluding the possibility 
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that the G to A sequence change represented a common 
polymorphism. Finally, cycle sequencing of these geno- 
mic PCR products demonstrated that affected children 
are homozygous for the arginyl codon, while unaffected 
children are homozygous for the glycyl codon; both par- 
ents are heterozygous for the sequence change (see Fig- 
ure 4B). 

Discussion 

We present evidence that the COL 71A2 gene is associated 
with both autosomal dominant and autosomal recessive 
human osteochondrodysplasias. These data suggest that 
collagen Xl is essential for norma~ skeletal development, 
in agreement with the conclusions of Li et al. (1995) in 
their accompanying paper. 

A Mutation in COLl lA2  Causes Autosomal 
Dominant Stickler Syndrome without 
Eye Involvement 
We have identified a G to A transition at a splice donor 
site within the COL11A2 gene, which cosegregates with 
an autosomal dominant Stickler syndrome phenotype in a 
large family. In vitro splicing experiments have previously 
demonstrated the importance of the five conserved nucle- 
otides at the splice donor site for efficient and correct splic- 
ing of mRNA (Talerico and Berget, 1990), and similar muta- 
tions in (~1(I) and (~2(I) collagen genes have been implicated 
in other osteochondrodysplasias (reviewed by Kuivaniemi 
et al., 1991). The present mutation causes in-frame skip- 
ping of a 54 bp exon, encoding 18 amino acid residues 
within the triple helical domain of the (z2(Xl) collagen mole- 
cule (Figure 1). Approximately 50% of the COL11A2 
mRNA transcripts recoverable by RT-PCR from patient 
chondrocytes and EBV-transformed lymphoblasts contain 
the deleted exon (data not shown), suggesting that the 
mutation does not significantly affect mRNA stability. The 
mutated polypeptide chain may therefore be synthesized 
at a level comparable to that of the wild-type chain. Mutant 
(~2(Xl) chains would be 18 amino acid residues shorter 
than wild-type chains, but would contain the intact se- 
quence of the carboxy-terminal propeptide domain. In fi- 
brillar procollagens, including collagen Xl, chain associa- 
tion during trimer assembly initiates at the carboxy-terminal 
propeptide domain (Dolz and Engel, 1990). Therefore, mu- 
tant (~2(Xl) chains are likely to associate with (~I(Xl) and 
(z3(Xl) chains during trimer assembly. Once associated, 
however, the 18 amino acid deletion within the triple- 
helical domain is likely to interfere with normal triple helix 
formation. Whether the phenotypic effect of this mutation 
is due to the rapid degradation of abnormally folded hetero- 
trimers causing a deficiency of collagen Xl or whether it 
is a consequence of copolymerization of abnormal mole- 
cules with normal collagen II, IX, and Xl molecules in carti- 
lage collagen fibrils requires further study. 

Mutations affecting another co{lagen gene, COL2A1, 
have previously been identified in several families affected 
by Stickler syndrome having eye involvement, but genetic 
heterogeneity has been observed in other families (re- 
viewed by Vikkula et al., 1994). Snead et al. (1994) have 

recently extended this observation by linking COL2A1 in 
20 additional families with eye involvement and excluding 
COL2A 1 in four families lacking congenital vitreous anom- 
aly. Our results suggest that COL11A2 is the likely candi- 
date for these unlinked families. 

Interestingly, although COL2A1 mutations can result in 
a spectrum of osteochondrodysplasia phenotypes (re- 
viewed by Vikkula et al., 1994), only haploinsufficiency 
mutations (i.e., premature stop codons) have been identi- 
fied in the COL2A/-linked Stickler syndrome families. Since 
type II collagen accounts for 90% of total cartilage colla- 
gen, it is not surprising that haploinsufficiency could have 
a phenotypic consequence. Whether haploinsufficiency 
mutations affecting collagen XI, which comprises less than 
10% of total cartilage collagen, have a similar effect can- 
not yet be determined. 

A C01.11A2 Mutation Is Also the Cause 
of the Autosomal Recessive Phenotype 
The three affected patients in the consanguineous family 
with autosomal recessive osteochondrodysplasia appear 
homozygous by descent for an interval defined by seven 
chromosome 6p21 CA repeat markers, within which we 
have mapped the COL11A2 gene (Figure 4A). Using con- 
servative estimates for mutant allele frequency (0.002) and 
extended haplotype frequency (0.005), a Iod score of 3.09 
with the COLllA2 locus was obtained. 

The phenotype of the affected members in this family, 
although more severe, resembles that of the family with 
the dominantly inherited COL11A2 splice site mutation 
(Table 1). It also shares similarites with the OSMED syn- 
drome (Giedion et al., 1982), which itself shares radio- 
graphic features with Stickler syndrome (Spranger, 1985). 
The clinical similarity among these disorders and the evi- 
dence of linkage to the COL11A2 locus in our family 
strongly suggested that a mutation in COL11A2 was re- 
sponsible for the autosomal recessive phenotype as well. 

The COL11A2 mutation causing the autosomal reces- 
sive phenotype is likely to affect the stability of heterotri- 
meric collagen Xl molecules since it changes a glycyl resi- 
due in a Gly-X-Y triplet to arginine. The location of the 
mutation within the triple-helical domain of ~2(Xl) collagen 
suggests that it creates, like the mutation in the autosomal 
dominant Stickler syndrome, a mutant polypeptide capa- 
ble of participating in trimer assembly. This raises the 
question of why heterozygous "carrier" parents for the gly- 
cine to arginine mutation are asymptomatic, while the het- 
erozygotes for the exon-skipping mutation show a clinical 
abnormality. We suggest that a possible reason for this 
difference is that substituting arginine for glycine close to 
the amino terminus of collagen Xl molecules may still allow 
incorporation of mutated molecules into cartilage fibrils 
and therefore may allow some residual function, while a 
large in-frame deletion close to the carboxyl end of the 
molecule causes a complete disruption of triple-helical 
folding and function. Supporting evidence for this comes 
from mice heterozygous for the cho mutation (a functional 
null allele in Co111al) that are asymptomatic, suggesting 
that a reduction in the level of functional collagen XI may 
not be clinically apparent. In contrast, however, homozy- 
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gosity for the cho mutation, leading to complete deficiency 
of Co/11al, has profound phenotypic consequences (Li 
et al., 1995). 

In the mice, homozygosity for a functional null mutation 
in Co/11al results in a perinatal lethal chondrodysplasia. 
A partial loss of function would explain why the recessive 
mutation in COL11A2 is not l ikewise lethal. In addition, 
there is a difference in utilization of a l (XI )  and a2(XI) 

chains within type Xl collagen heterotrimeric molecules. 

In mammalian vitreous, the COL5A2 gene product, a2(V), 

replaces ~2(XI), forming a col lagen V/XI hybrid molecule 
(Mayne et al., 1993). This most likely accounts for the lack 
of eye involvement associated with COL 11A2 mutations 
and could lessen the effects of a COL11A2 mutation if a 
similar substitution also occurs in extraocular tissues. 

It is interesting to note that both parents in the family 

with the recessive syndrome did not show clinical abnor- 
malities in articular cartilage, although there appears to 
be a history of osteoarthritis on the paternal side of the 
family. This obviously raises the possibil ity that mutations 
in col lagen XI genes similar to the one described here may 
represent a predisposing factor in osteoarthritis. 

Experimental Procedures 

Analysis of the COL11A2 Gene 
RNA was extracted from EBV-transformed lymphoblasts or chondro- 
cytes following the protocol of the REX total RNA extraction kit (U. S. 
Biochemical). One to two micrograms of total RNA was used as tem- 
plate for reverse transcription using the Superscript Preamplification 
System (GIBCO BRL). Oligo(dr)s or random hexamers were used as 
primers for the cDNA synthesis. 

For analysis of the dominant syndrome, PCR primers were designed 
to amplify the approximately 4.95 kb cDNA in five overlapping frag- 
ments. Nested primers were used for second round PCR. Amplification 
for the first round was performed for 35 cycles, with one cycle con- 
sisting of 94°C for 30 s, 58°C for 30 s, and 72°C for 3 min, followed 
by a final extension step at 72°C for 10 rain. Second round PCR 
reactions differed from first round reactions in that 40 cycles were 
used, primer annealing was at 64°C, and primer extension was for 
2 rain. The primers used were as follows (nucleotide positions counted 
from the major transcription start site are shown in parentheses): 
COL11A2-1 (sense), 5'-CGGTGGATGGAAGCCGTCTGA (nucleotides 
4507-4527); COL11A2.-2 (antisense), 5'-GTGACGTCATCCCTAGGCGT 
(nucleotides 4822-4803); COL11A2-6 (antisense), 5'-CGCCATGTCCTT- 
TCTCTTCTC (nucleotides 5456-5466); COL11A2-7 (sense), 5'-GGG- 
GGACCCA'I-IGGTCGCCA (nucleotides 3039-3058); COL11A2-8 
(antisense), 5'-TCTCCATCCTCTCCAGCCAC (nucleotides 3217-3198); 
COL11A2-9 (sense), 5'-GGCTCATAGTCTGCTCCCTG (nucleotides 
128-147); COL11A2-10 (sense), 5'-G GCCCAG'I-FGGAGACCCTGG (nu- 
cleotides 1221-1240); COL11A2-11 (antisense), 5'-CCAGGGTCTCCAG- 
TCGGTCC (nucleotides 2314-2295); COL11A2-12 (sense), 5'-CCCTCT- 
GGACCTCAGGGACC (nucleotides 2082-2101); COL11A2-13 (anti- 
sense), 5'-GCGCCATTGGGTCCAGCTGG (nucleotides 3541-3522); 
DDI (sense), 5'-AAGGAGAGCCTGCAGTGTTG (nucleotides 1117- 
1136); and PO2 (antisense), 5'-GAATGGGAGCATGAGAGATGT (nu- 
cleotides 1325-1305). 

The sets of primers used were as follows: 9/11, DDI/8, DDI/13, 
6•7, and 1/6 (for this primer pair, the second round conditions were 
used) for the first round and 9/PO2, 10/11,1 2/8, and 712 for the second 
round, respectively. 

All PCR reactions were done in a total volume of 50 p_l containing 
1 x PCR buffer, 200 p.M dNTPs, 0.5 p.M (each) primer, and 1 U of 
Taq polymerase. For SSCP and heteroduplex analyses, 0.5 p.I of [a- 
~P]dCTP (10 mM, 2000 Ci/mmol) was added to the reaction. All five 
fragments were cut into smaller fragments using a set of different 
restriction enzymes: (9/PO2: Fokl, Hinfl, Nlalll, Styl; 10/11: Aval, Fokl, 
Hinfl, Styl; 12/8: Apal, Fokl, Mspl, Styl; 7/2: Apal, Fokl, Hinfl, Styl; 

and 1/6: Alul, Fokl, Hinfl, Styl). The digested products as well as the 
undigested full-length products were loaded both on MDE gels and on 
5o/o nondenaturing polyacrylamide SSCP gels (Warman et al., 1993). 

Fragments showing differences with either technique were further 
analyzed by dideoxy-nucleotide cycle sequencing (dsDNA Cycle Se- 
quencing System, G IBCO-BRL) using ~P end-labeled primer. Second- 
round PCR primers were used for the sequencing reactions. For am- 
plifying genomic DNA, an additional primer set was synthesized: 
COL11A2-16 (antisense): 5'-'I-rGGCTCCTTTGGGGCCAGC (nucleo- 
tides 4381-4362); COL11A2-17 (sense): 5'-CCCTGGGCAGAAGGGT- 
GAGA (nucleotides 4280-4299). Amplification conditions were 35 cy- 
cles at 94°C for 30 s, 58°C for 30 e, and 72°C for 1 min, with a final 
extension at 72°C for 10 min. The amplification product was also cycle 
seque~lced. 

For analysis of the recessive syndrome, several pairs of PCR prim- 
ers were used to amplify the a2(Xl) cDNA in seven overlapping frag- 
ments. In addition to primers that were used for analysis of the domi- 
nant syndrome (C OL1 t A2-1, -6, -8, -9, -10, -11, -12, and -13), several 
other primers were also used, and they were as follows: COL11A2-14 
(antisense), 5'-GTCGGTATGGCCTCATCTFCC (nucleotides 4552- 
4532); COL11A2-15 (sense), 5'-GATCCTGGCGCTATAGGTGCC (nu- 
cleotides 3981-4001); COL11A2-21 (antisense), 5'-CTCAGACCAT- 
CAGGGCCAGG (nucleotides 4066-4047); COL11A2-22 (sense), 
5'-AGTGCAGGGTCCTGTGGGGC (n ucleotides 3152-3171 ); COL11 A2- 
23 (antisense), 5'-CCCTTCAGACC CCGAATTCCG (nucleotides 2161 - 
2150); COL11A2-27 (sense), 5'-TCTGGGGAGAAGGGAGAAAC (nu- 
cleotides 3453-3472); and COL11A2-82 (antisense), 5'-CCTCGCCTG- 
CTGCAGGATCG (nucleotides 1409-1390). 

The first round of PCR was performed with the primer sets 9/11, 10/ 
13, 13122, 21/27, 14115, and 1/6; for the second round, the PCR-nested 
primers were 9•32 (9/11-PCR used as a template), 12/8, and 23/10 
(10/13-PCR used as a template). Amplification reactions and condi- 
tions were essentially the same as for the analysis of the dominant 
syndrome, except for minor adjustments of annealing temperature and 
extension times, as needed. 

The PCR products were sequenced by cycle sequencing. Sequenc- 
ing primers were as follows: COL11A2-2, COL11A2-6-COL11A2-17, 
-21, -22, -23, -27, -32, -36, and -37. Others used were as follows: 
COL11A2-5 (antisenee), 5'-CCGAATGGACAGGATCAGAC (nucleo- 
tides 5204-5185); COL11A2-20 (sense), 5'-CCAACGGGTI'TCCTG- 
GACCG (nucleotides 2614-2633); COL11A2-26 (sense), 5'-CAGGGC- 
ATCCAGCGTCTCAG (nucleotides 161-181); COL11A2-28 (sense), 
5'-AGGGAACCCTGGTCCTGTTG (nucleotides 3752-3771); COL11A2- 
29 (sense), 5'-TGCCTGGCTATCCTGGACGT (nucleotides 2362- 
2281); COL11A2-30 (sense), 5~-CACTCGCCAG CTTTTCCCAG (nucle- 
otides 434-453); COL11A2-31 (sense), 5'-GGAGACTTAGGACCT- 
CAGGG (nucleotides 1503-1522); COL11A2-33 (sense), 5'-AGAGCC- 
AGGACCTCCTGGAC (nucleotides 1892-1911); COL11A2-34 (sense), 
5'-GGTGATGTCCAGGAGCTGGC (nucleotides 828-847); and COL- 
11A2-35 (antisense), 5'-TGATTCATAGGCTGCCTGGACC (nucleotides 
881-860). 

For amplification of genomic DNA from members of the family with 
the recessive syndrome, primers 23133 were used to amplify a 1.2 kb 
product. This product was digested with Mspl, and the digest was 
analyzed by electrophoresis through 4% agarose. The products were 
also sequenced by cycle sequencing using primers COL11A2-23 and 
COL11A2-38 (intronic sequence, sense): 5'-TCCGGGAGGCTGGATA- 
GAAG. 

Segregation of the Mutation with the Autosomal 
Dominant Phenotype 
A primer, COL11A2-18 (sense): 5'-GGTATCCCAGGAGCATCCGG 
(nucleotides 4302-4321), was synthesized closer to the novel Nlalll 
site created bythe G to A transition, and PCR was used to amplify a 180 
bp fragment from genomic DNA covering the mutation site (primers 
COL11A2-16 and COL11A2-18). 35 cycles, each performed at 94°C 
for 30 s, 62°C for 30 s, and 72°C for 40 s, were done with a final 
extension step at 72°C for 10 rain. The Nlalll site created by the 
mutation lies 55 bp downstream of the COL11A2-18 primer, whereas 
a Nlalll site in the wild-type sequence is 125 bp downstream. The 
COL11A2-18 primer was end labeled with 32p, and genomic DNAs of 
all family members were amplified with the primer pair. The PCR prod- 
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uct was Nlaill digested and analyzed on a 5% denaturing polyacryl- 
amide gel (Figure 2). 

Linkage Analysis in the Family with Autosomal 
Recessive Osteochondrodysplasia 
Genomic DNA was isolated from peripheral blood. To define the 
COL11A2 locus in 6p21.3 (Kimura et al., 1989), we used CA repeat 
polymorphisms from 10 loci that are in the same or adjoining chromo- 
some subband. PCR amplification of genomic DNA was used to ana- 
lyze the marker loci using [(x-3=P]dCTP in order to label the amplified 
DNA. Allelic bands were separated on a 8.6% denaturing polyacryl- 
amide gel and visualized by overnight exposure of the dried gel to 
Kodak X-OMAT S film. The Mlink program package (version 5.03)was 
used for the calculation of Iod scores (Lathrop et al., 1984) assuming 
autosomal recessive inheritance, in the calculations, the frequency of 
the disease allele and the frequencies of the marker alleles were varied 
as discussed in Results. 

SSC and Mspl Polymorphisms within the COLllA2 Gene 
The primer pair consisting of COL11A2-1 and COL11A2-2 was used 
to amplify an 898 bp genomic DNA fragment containing a 583 bp 
intron. Cycling conditions were 30 cycles of 95°C for 30 s, 58°C 
for 30 s, and 72°C for 1 min, with a 10 min 72°C final extension. 
SSC analysis of the full-length product identified a 3-allele pelymor- 
phism (with allele frequencies 0.76, 0.03, and 0.21, from largest to 
smallest allele size). This polymorphism was used to incorporate the 
COL11A2 gene in the CEPH linkage map (Figure 5). Of 38 CEPH 
pedigrees, 12 were informative for the COL11A2 SSC polymerphism. 
Pairwise and multipoint linkage analyses were performed between 
COL 11A2 and loci on human chromosome 6 (CEPH Database, version 
7.0) using version 5.10 of the LINKAGE programs supplied by Dr. 
J. Ott (Lathrop et al., 1984). Allele frequencies were determined by 
genotyping 31 CEPH grandparents. Sex-specific recombination rates 
for males and females were set to be equal (®m = ®f) for the pair- 
wise linkage analysis. Two-point analysis was carried out using the 
CLODSCORE portion of the program, and locus order calculations 
were done using CILiNK. Final order testing was done by testing the 
inverted orders using CILINK. 

Another polymorphism, detected during SSCP and heteroduplex 
analysis, created a novel Mspl restriction enzyme cutting site in the 
COL11A2 cDNA. Two primers were synthesized to amplify the region 
containing this polymorphism from genomic DNA: COL11A2-36 (anti- 
sense), 5LTGTAGGCCAATGGGTCCTGG (nucleotides 3436-3417) 
and COL11A2-37 (sense), 5'-TGTGGGGCAGCCTGGAGCAG (nucleo- 
tides 3308-3327). The PCR program used contained 30 cycles with 
94°C for 30 s, 64°C for 30 s, and 72°C for 60 s, with a final exten- 
sion at 72°C for 10 min. The length of the amplification product, when 
genomic DNA was used as template, was approximately 320 bp. The 
polymorphism creates a unique Mspl site in this fragment, forming 
two restriction fragments, 230 bp and 90 bp long (Figure 4A). 
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